a2 United States Patent

Christodorescu et al.

US009489426B2

US 9,489,426 B2
*Nov. 8, 2016

(10) Patent No.:
45) Date of Patent:

(54) DISTRIBUTED FEATURE COLLECTION
AND CORRELATION ENGINE

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2014/0351227 Al

Mihai Christodorescu, Briarcliff
Manor, NY (US); Xin Hu, White
Plains, NY (US); Douglas Lee Schales,
Ardsley, NY (US); Reiner Sailer,
Scarsdale, NY (US); Marc P. Stoecklin,
Riverdale, NY (US); Ting Wang, White

Plains, NY (US)

International Business Machines
Corporation, Armonk, NY (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 346 days.

This patent is subject to a terminal dis-

claimer.
13/967,730
Aug. 15, 2013

Prior Publication Data

Nov. 27, 2014

Related U.S. Application Data

Continuation of application No. 13/899,784, filed on
May 22, 2013.

Int. CL.

GO6F 17/30

U.S. CL

(2006.01)

CPC ... GOGF 17/30489 (2013.01); GOGF 17/30477
(2013.01)

Field of Classification Search

CPC

GOGF 17/30487; GOGF 17/30867,

GOGF 17/30477

LA U
04T INGESTION

110

12¢

FEATURE

EXTRACTION b, 200
EXIRA EXTRAS
HEAIGEE
HEREAE

FEATURE.
AGGREGATION

USPC 707/687-704
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,978,275 B2 12/2005 Castellanos et al.
2007/0183655 Al 8/2007 Konig et al.
2010/0223244 Al* 9/2010 Sinha et al. 707/705
2012/0215829 Al 8/2012 Naphade et al.
2012/0310882 Al* 12/2012 Werner et al. 707/624
2013/0275656 Al* 10/2013 Talagala GOGF 12/0246
711/103
2013/0339366 Al* 12/2013 Khimich et al. 707/741
FOREIGN PATENT DOCUMENTS
WO 2007147166 12/2007

* cited by examiner

Primary Examiner — Etienne Leroux
Assistant Examiner — Cindy Nguyen

(74) Attorney, Agent, or Firm — Ryan, Mason & Lewis,
LLP

(57) ABSTRACT

A distributed feature collection and correlation engine is
provided, Feature extraction comprises obtaining one or
more data records; extracting information from the one or
more data records based on domain knowledge; transform-
ing the extracted information into a key/value pair com-
prised of a key K and a value V, wherein the key comprises
a feature identifier; and storing the key/value pair in a feature
store database if the key/value pair does not already exist in
the feature store database using a de-duplication mechanism.
Features extracted from data records can be queried by
obtaining a feature store database comprised of the extracted
features stored as a key/value pair comprised of a key K and
a value V, wherein the key comprises a feature identifier;
receiving a query comprised of at least one query key;
retrieving values from the feature store database that match
the query key; and returning one or more retrieved key/value
pairs.

20 Claims, 9 Drawing Sheets

3
@

Jm
GATh SOURCES !
101 110-2 110-H | §
—“ (Fams] .. —m- i
7 it INPUT DATA 5 i
115 i
0
RAcToR

mii
i
H
i

FEATURES
125 s

ATION
B

1404

ey

E) J
[coecron | [coueetor |
AGGREGATION 44D

—7 OE-DUPLI
R

[

400}
—1
\ .
¥

ROOT COLECTOR |

L
ROOT COLECTOR

ST (S
A

o BS[E]en
50 (B

160|FEATURE

moH wlse |»

AN e
165
ANALYTICS APPLICATION 180

U.S. Patent

Nov. 8, 2016

Sheet 1 of 9

US 9,489,426 B2

DATA SOURCES

£ 110-1

£ 110-2

110-N
INPUT DATA —Wn

120 A FEATURE

EXTRACTION

JL 200

115
£ 200

EXTRACTOR

EXTRACTOR

SS gFS

SS gFS

200
EXTRACTOR

SS @FS

700

400

700

400

700

400

/i

EXTRACTED

/1

130 1 FEATURE
AGGREGATION

300 J/
$

COLLECTOR

SS
700
i\

400
/i

AGGREGATION AND

FEATURES
125

Yy

COLLECTOR

SS

700 | =400

DE-DUPLICATION

/i

%\5__

c00 ‘% "él}?oﬁ""

7300

ROOT COLLECTOR

ROOT COLLECTOR

140 | FEATURE

SS | QS
700] 600

SS | QS
7001 600

STORAGE

G e o o > " — - . — T B S T > " - ———— "

500

FEATURE
RETRIEVAL

DATA
CONSUMER

ANALYTICS APPLICATION

—~ 180

2 e e o e . P 0 > e e . o e e e e S i e 400 20

U.S. Patent Nov. 8, 2016 Sheet 2 of 9 US 9,489,426 B2

FIG. 2

20— INITIALIZE)
205 CONNECT T0 COLLECTOR >

!
210~/< CONNECT TO DATA FEED >

A
215— RECENE INPUT RECORD //

220~ PARSE AND VALIDATE RECORD

230~—/SUBMIT FEATURE(S) TO COLLECTOR/

U.S. Patent

Nov. 8, 2016

Sheet 3 of 9

FIG. 34

305

INITIALIZE
(RETRIEVE CONFIGURED
FSs AND Cs)

y

310

REGISTER COLLECTOR
WITH REGISTRY SERVER

A

315

LISTEN FOR CLIENTS
SUBMITTING FEATURES

320~

RECEIVE FEATURES

325~

PARSE AND
VALIDATE FEATURES

J

330~

SEND FEATURES TO
CONFIGURED FSs AND Cs

335

CLEAN UP AND GO
BACK TO LISTENING

/ 300

US 9,489,426 B2

U.S. Patent Nov. 8, 2016

Sheet 4 of 9

FIG. 3B

US 9,489,426 B2

/ 3530

if R =90 then

store tuple (K.(TS.V)
else
if V exists in R then

if 7S < TS’ then

end if
else

end if
end if
end for

append (TS.V) to R
write R to featurs store

new record 1s created

TS’ « timestamp associated with ¥ in R

replace TS” with TS in R
write R to feature store

for newly arriving key-value pair K~V with time TS do
R <« lookup of local feature store using key K

update timestamp

append new value

WRITE

(KEY, VALUE)
450

N\

FIG. 44

READ (KEY
48%)

/

\ BUCKET

410-A

BUCKET /

410-8
R

KEY B
420-8

FEATURE
STORE

—~ 400

U.S. Patent Nov. 8, 2016 Sheet 5 of 9

FIG. 4B

450
J

WRITE (K, V)

y
RETRIEVE BUCKET OF
4607 VALUES (BV) ASSOCIATED
WITH KEY K

465 » YES

NO

APPEND V TO BUCKET
470~ AND REMOVE CLIENT
IDENTIFICATION INFORMATION

\

475 RETURN)

FIG. 4C

480
J

READ (K)

1
RETRIEVE BUCKET OF
4907 VALUES (BV) ASSOCIATED
WITH KEY K

495~ RETURN BV)

US 9,489,426 B2

U.S. Patent

Nov. 8, 2016 Sheet 6 of 9
FIG. 54
515 LISTEN FOR QUERY SERVER

REGISTRATION REQUEST

]

520~

RECEIVE TAGS IDENTIFYING
QUERY SERVER CAPABILITIES

525~

CREATE NEW
IDENTIFICATION AND
MAP TAGS TO IDENTIFIER

530~

STORE INFORMATION
IN THE HASH TABLE

535

CONNECTION
10 CLIENT CLOSED

540

REMOVE CLIENT
IDENTIFICATION INFORMATION

US 9,489,426 B2

U.S. Patent

Nov. 8, 2016 Sheet 7 of 9

FIG. 5B
(CSTART)

560 -

WAIT FOR CLIENT REQUESTS

!

565

RECEIVE TAGS (KEY/VALUE PAIRS)

|

570

LOOKUP ALL QUERY SERVER IDs IN
HASH-TABLE USING RECEIVED KEYS

'

575

DETERMINE INTERSECTION I OF
IDENTIFIED SERVERS SATISFYING ALL TAGS

'

580

RETURN SET I OF QUERY
SERVER IDENTIFIERS TO CLIENT

FIG. 6

START

605~

REGISTER SUPPORTED
KEY/VALUE PAIRS WITH REGISTRY

\d

610~

WAIT FOR CLIENT
REQUEST AND RECEIVE KEYS

!

615

RETRIEVE ALL VALUES FROM
FEATURE STORE THAT MATCH KEYS

]

620~

SEND RETRIEVED
(KEY/VALUE) PAIRS TO CLIENT

I

US 9,489,426 B2

550
J

500
J

U.S. Patent Nov. 8, 2016 Sheet 8 of 9 US 9,489,426 B2

FIG. 74
710
CSTaRT) J
715 LISTEN AND RECEIVE KEY MATCH PATTERN (KMP) FROM CLIENT
'
720 REGISTER KMP WITH FEATURE STORE

725A STORE CLIENT/MATCHING PATTERN IN SUBSCRIBER LIST

CLIENT DISCONNECTED?

YES
735 REMOVE CLIENT FROM SUBSCRIBER LIST

OTHER
CLIENTS WITH 5MP CONNECTED

NO
745 UNREGISTER KMP FROM FEATURE STORE

730

740

FIG. 7B
CSTART) J e

I
RECEIVE NEW FEATURES FOR
REGISTERED KMP FROM FEATURE STORE

!

LOOKUP SUBSCRIBER LIST FOR CLIENTS
WHOSE KMP FIT NEW FEATURES

!

7651 FORWARD NEW FEATURES TO THOSE CLIENTS

L

755

760

US 9,489,426 B2

Sheet 9 of 9

Nov. 8, 2016

U.S. Patent

7-018
5018 -0l
7-0i8
NOISNV4XI TVH3LVT - 4 300 ddr U IV =018
SHOIAVHIE ANSHY - w d <08
ISNYD WLINILOd : . . .
135SV - 3 . AE . 3 : Ev : JAVN
SY35N - Ll NIVHOC
(319344V. INVLNOINT — Ll -
\ NOLLY13¥¥02
NOLLY 13440 ONIONYX]
ONIONG3Y
INRH0DS WS SIOAI0 NUIINT wm%%%%mzﬂwﬁwﬁ INHOVN
L SISVNY LOVGM/3SVD QL3 0 305 | SIE (Y TWNYILXT
& 9IHd

US 9,489,426 B2

1
DISTRIBUTED FEATURE COLLECTION
AND CORRELATION ENGINE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/899,784, filed May 22, 2013, incorporated
by reference herein.

FIELD OF THE INVENTION

The present invention relates generally to the electrical,
electronic and computer arts, and, more particularly, to
techniques for obtaining and processing data.

BACKGROUND OF THE INVENTION

Many enterprises have been challenged by a shift to
sophisticated and evolving cyber security threats. Attackers
are increasingly applying stealthy attack techniques to help
hide their presence or, at least, reduce the probability of
being detected, e.g., by concealing their attack steps over
multiple machines and exploiting different application pro-
tocols, or spreading their activities over long periods of time.
Many of these threats are referred to as advanced persistent
threats (APT).

Detecting and investigating such complex attack patterns
requires the collection, storage, and analysis of events from
a variety of vantage points, different data sources, and
multiple abstraction layers. The monitoring data, often
exported at rates of many thousands of events per second,
needs to be collected, stored, and made available for real-
time and historical analysis. With such a load and variety of
relevant data types and varying collection delays, cyber
security threat investigation has turned into a significant data
problem. Many collected events only become meaningful
when they are put into context across different data sources
over potentially large time windows (such as weeks or
months) to form a big picture of ongoing and past activities
in the network and to filter out false alarms or anomalies
having little or no impact.

Timely responses to such security incidents require near
real-time analysis of the data, while investigations require
access to historical data spanning large time windows.
Existing solutions, however, process data in real time with
a relatively small time window or only support historical
data and require sequential access to the stored data. Input/
Output (IO) limits become the dominating factor and exist-
ing solutions work around this by distributing the 1O across
large clusters of machines with increasing cost of setup and
recombination of results.

A need exists for improved techniques for obtaining and
processing raw data. A further need exists for a data pro-
cessing system that permits (i) substantially real-time analy-
sis of the data to provide a timely response to an incident;
and (ii) access to historical data spanning large time win-
dows to permit investigations.

SUMMARY OF THE INVENTION

Generally, methods and apparatus are provided for dis-
tributed feature collection and correlation. According to one
aspect of the invention, a feature extraction data processing
method comprises the steps of obtaining one or more data
records; extracting information from the one or more data
records based on domain knowledge; transforming the

10

15

20

25

30

35

40

45

50

55

60

65

2

extracted information into a key/value pair comprised of a
key K and a value V, wherein the key comprises a feature
identifier; and storing the key/value pair in a feature store
database if the key/value pair does not already exist in the
feature store database using a de-duplication mechanism.

According to one aspect of the invention, a method for
querying one or more features extracted from one or more
data records comprises the steps of obtaining a feature store
database comprised of the extracted features stored as a
key/value pair comprised of a key K and a value V, wherein
the key comprises a feature identifier; receiving a query
comprised of at least one query key; retrieving values from
the feature store database that match the query key; and
returning one or more retrieved key/value pairs.

A more complete understanding of the present invention,
as well as further features and advantages of the present
invention, will be obtained by reference to the following
detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary feature
collection and correlation engine (FCCE) system that incor-
porates aspects of the invention;

FIG. 2 is a flow chart describing an exemplary imple-
mentation of a feature extractor incorporating aspects of the
present invention;

FIGS. 3A and 3B are flow charts describing exemplary
implementations of a feature collector incorporating aspects
of the present invention;

FIG. 4A illustrates an exemplary feature store incorpo-
rating aspects of the present invention;

FIG. 4B is a flow chart describing an exemplary imple-
mentation of a write process of the feature store incorpo-
rating aspects of the present invention;

FIG. 4C is a flow chart describing an exemplary imple-
mentation of a read process of the feature store incorporating
aspects of the present invention;

FIGS. 5A and 5B, respectively, are flow charts describing
exemplary implementations of a query server registration
process and a client query server discovery process provided
by the exemplary registry server;

FIG. 6 is a flow chart describing an exemplary imple-
mentation of a query server process incorporating aspects of
the present invention;

FIGS. 7A and 7B, respectively, are flow charts describing
exemplary implementations of a new clients/pattern sub-
scription process and a new matching features streaming
process provided by the exemplary subscription server; and

FIG. 8 illustrates an exemplary analysis of a security
threat in accordance with aspects of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Aspects of the present invention provide a feature collec-
tion and correlation engine (FCCE). According to one aspect
of the invention, the exemplary disclosed FCCE system
comprises a distributed data management system that
extracts, normalizes, stores, retrieves and correlates features
from diverse network data sources. The exemplary FCCE
system supports geographically distributed data sources not
requiring continuous connectivity between the sources and
provides resilience against failures of individual nodes
within the distributed engine architecture.

According to another aspect of the invention, domain
knowledge can be leveraged to extract core features at the

US 9,489,426 B2

3

point where the data is ingested, using a de-duplication
mechanism, such that the amount of data is greatly reduced,
with a hierarchically structured collection system, such that
the de-duplicated core features across all the data sets arrive
at a conceptually central location, where they are available
either in near real-time, or can be accessed in a historical
manner to detect or investigate cyber threats.

According to yet another aspect of the invention, a key
and value are defined for each feature extracted. The key is
used to identify a particular bucket of values that is treated
as a mathematical set. The mathematical sets allow data to
be ingested without consideration of temporal ordering. In
this manner, older historical data sets can be ingested into
the system along with real-time data.

FIG. 1 is a block diagram of an exemplary feature
collection and correlation engine (FCCE) system 100 that
incorporates aspects of the invention. As shown in FIG. 1, an
exemplary embodiment of the FCCE system 100 comprises
a data ingestion framework 105 of feature extraction 120
(ingesting and processing raw data from data sources 110 to
abstract extracted features 125); feature aggregation 130
(collecting and merging extracted features 125 from differ-
ent data sources 110); and feature storage 140 (storing the
aggregated and de-duplicated results 135). In addition, the
exemplary embodiment of the FCCE system 100 comprises
a data retrieval framework 150 that comprises a feature
retrieval layer 160 that provides an interface for efficient
querying features of interest by data consumers 170.

As shown in FIG. 1, the exemplary FCCE system 100
comprises at least one feature extractor 200, discussed
further below in conjunction with FIG. 2, at least one feature
collector 300, discussed further below in conjunction with
FIG. 3, at least one feature store 400, discussed further
below in conjunction with FIG. 4, optionally one or more
registry servers 500, discussed further below in conjunction
with FIG. 5, optionally one or more query servers 600,
discussed further below in conjunction with FIG. 6, and
optionally one or more subscription servers 700, discussed
further below in conjunction with FIG. 7.

Generally, as discussed hereinafter, the exemplary feature
store 400 is based on a key-value store and stores features
related to raw data that are later used for retrieval of
correlated features in a highly scalable manner. Generally,
the exemplary feature extractor 200 connects to raw data
sources 110 (live or batch/stored) and extracts features that
are forwarded to at least one feature collector 300. In an
exemplary embodiment, the data sources 110 comprise
domain name server (DNS) data 110-1, Intrusion Prevention
System (IPS) alerts 110-2 and netflow data 110-N. The
exemplary feature collector 300 then validates the features
and stores them in at least one feature store 400.

The data retrieval framework 150 of the FCCE system
100 supports retrieval of correlated features. A client (e.g.,
analytics applications 180 and visualization tools) can either
query a selected feature store 400 or ask one more query
servers 600 to return features from the feature store 400 that
match provided keys. A query server 600 will return any
features currently available in its feature store 400 that
match the provided keys. Clients can also request features
from one or multiple subscription servers 700, which will
continuously return any new features entering the feature
store 400 that match the keys. A query provider/subscription
provider 165 provides a front-end or middle layer for clients
to communicate with the feature stores 400, registry server
500, query servers 600 and subscription servers 700.

A registry server 500 can broker connections between any
of the components. Components register with the registry

10

15

20

25

30

40

45

50

55

60

65

4

server 500 and advertise their capabilities with the registry
server 500. Other components and clients can then query the
registry server 500 for any registered components based on
provided capabilities.

One or more analytics application 180 can be provided to
efficiently access the features.

Feature Extraction

FIG. 2 is a flow chart describing an exemplary imple-
mentation of a feature extractor 200 incorporating aspects of
the present invention. Generally, as discussed further below,
during a feature extraction phase 120, for each input data
source 110, domain experts specify methods of abstracting
features from the raw data, using a feature extractor 200.
Each individual data input is associated with one or more
extractors 200. The extracted features from each individual
data input can then be directly forwarded to the next phase
or de-duplicated and cached in local, transient feature stores
400. These transient feature stores 400 constitute the locally
derived knowledge from the associated data inputs 110.

The feature extractor 200 extracts features from the
associated data input 115 and encodes the features into a
pre-defined format. More specifically, the ingested data is
decoded by a data type-specific component, and the desired
information is extracted from the data records. Each piece of
the information is transformed (based on domain knowl-
edge) into a key-value pair. In addition, a timestamp (TS)
can be attached to each key-value pair and a feature iden-
tifier is contained within the key. Each key-value pair is then
encoded into a format defined by the implementation, with
the encoded key as K and the encoded value as V.

As shown in FIG. 2, the feature extractor 200 is initialized
and reads a configuration from a local file and/or from a
registration server 500 and retrieves a location of data source
110 and collector(s) 300. The feature extractor 200 connects
to configured collectors 300 during step 205 and then
connects to configured data sources 110 during step 210.

During step 215, the feature extractor 200 listens and
receives a record from a data source 110. The received
record is parsed and validated during step 220. The feature
extractor 200 extracts feature(s) from the record during step
225. The extracted features are submitted to the configured
and connected collectors 300 during step 230 and then
returns to the listening step 215.

Feature Aggregation

After feature extraction, the local knowledge is aggre-
gated at different extractors to form a global view, using one
or more feature collectors 300. Each collector 300 takes as
input the features extracted by multiple extractors 200 and
aggregates the results by de-duplicating any redundant fea-
tures. At each collector 300, a local feature store 400 is
maintained to store the derived, de-duplicated knowledge
from all the inputs feeding it. In the same manner as the
extractors 200, a collector 300 can optionally forward new
values to one or more other collectors 300, allowing a
hierarchical structure (e.g., tree) for the purpose of scalabil-
ity.

FIG. 3A is a flow chart describing an exemplary imple-
mentation of a feature collector 300 incorporating aspects of
the present invention. Generally, as discussed further below,
a collector 300 is responsible for aggregating the features
fed by multiple extractors 200 (or peer collectors 300) and
de-duplicating any redundancy in the input.

As shown in FIG. 3 A, the feature collector 300 is initial-
ized during step 305 by reading configured feature stores
400 and/or other collectors 300 that receive from this

US 9,489,426 B2

5

collector 300. During step 310, the collector instance of this
feature collector 300 is registered with the registry server
500 so clients can find it.

The feature collector 300 enters into a listening mode
during step 315 to accept new features from client(s). The
feature collector 300 receives and normalizes features from
multiple clients simultaneously during step 320, and parses
and validates received features during step 325.

During step 330, the feature collector 300 forwards fea-
tures to all configured feature stores 400 (using a write
operation to each feature store 400) and to all configured
collectors 300. The feature collector 300 cleans up and
returns during step 335 to step 315 to listen to new client
requests.

For a newly arriving feature value pair K-V (associated by
timestamp TS), a collector 300 implements the steps shown
in FIG. 3B. It is noted that every tuple {K; (TS; V)} written
to the local feature store 400 is also forwarded to the
designated collector(s) 300 in the hierarchy. As shown in
FIG. 3B, the key K is used to lookup a record in a key/value
style database. If the lookup fails, then the key K and value
V are new. A new record is written to the database keyed
with K and a value of {TS,V}. Otherwise, the record is
searched to determine if V already exists in the record. If V
does not exist in the record, then {TS,V} are appended to the
record and stored in the database and K+{TS,V} are for-
warded to the defined collectors 300.

Otherwise, the time stamp TS is compared to the time
stamp already associated with V. If the new timestamp TS is
earlier than the previous timestamp, then the new timestamp
TS is placed in the record with V and the record updated in
the database and K+{TS,V} are forwarded to the defined
collectors 300.

At the bottom of the hierarchy in the feature storage layer
140, one or more collectors 300 are designated as the Root
Collectors 300, which provide the permanent storage for the
collected features, as well as the Query Service (QS) 600 for
accessing the information.

Feature Store

The feature values in each bucket are treated as a math-
ematical set. The collection of all such sets forms the feature
store (FS) 400. The use of mathematical sets to aggregate
features allows ingestion of data without considering their
temporal ordering, which is beneficial for distributed envi-
ronments. Further, the mathematical sets enable efficient
merging of different data inputs that become available at
different points in time.

In an exemplary implementation, the feature store 400 is
implemented in C and utilizes a custom key/value store as
the underlying storage mechanism. Features are represented
in the key/value pair themselves. Both the key and value can
be encoded in an implementation specific encoding. By
using this encoding throughout the system 100, the key and
values can be processed by various components without the
need for understanding the specifics of the encoded data.

The feature store manager provides an API for adding
new features to the store and querying information from the
store. Both of these operations are asynchronous (i.e., work
is queued). In addition, the feature store manager provides
the framework for the feature subscription service (SS) 700.

FIG. 4A illustrates an exemplary feature store 400 incor-
porating aspects of the present invention. As shown in FIG.
4 A, the exemplary feature store 400 comprises a plurality of
buckets 410-A, 410-B that store a set of values, Val,
Va2, . .., and Vbl, Vb2, ..., respectively. Each bucket
410-A, 410-B, is uniquely identified by a corresponding key
420-A, 420-B. Values are written to the feature store 400

10

15

20

25

30

35

40

45

50

55

60

65

6

using a write process 450, as discussed further below in
conjunction with FIG. 4B, and are read from the feature
store 400 using a read process 480, as discussed further
below in conjunction with FIG. 4C.

FIG. 4B is a flow chart describing an exemplary imple-
mentation of a write process 450 incorporating aspects of the
present invention. Generally, the write process 450 writes a
key-value pair (k,v) to the feature store 400. As shown in
FIG. 4B, the write process 450 initially retrieves a bucket of
values associated with the key K during step 460. Thereafter,
a test is performed during step 465 to determine if “V’ is
already in the bucket. If it is determined during step 465 that
‘V’ is not already in the bucket, then append V to bucket,
remove client information during step 470 and return during
step 475. If, however, it is determined during step 465 that
‘V’ is already in the bucket, then return during step 475.

FIG. 4C is a flow chart describing an exemplary imple-
mentation of a read process 480 incorporating aspects of the
present invention. Generally, the read process 480 reads a
key value (K) from the feature store 400. As shown in FIG.
4C, the exemplary read process 480 retrieves a bucket of
values (BV) associated with the key K during step 490 and
returns the values during step 495.

The order in which values are written by the exemplary
feature store 400 does not make a difference (thus accom-
modating live and historical data). In addition, the exem-
plary feature store 400 performs data de-duplication and
streaming and provides distributed 1/O-storage and compu-
tation.

Registry Server

The exemplary registry server 500 comprises a query
server registration process 510 and a client query server
discovery process 550, as discussed further below in con-
junction with FIGS. 5A and 5B, respectively. Generally, the
registry server 500 provides a registration service (RS) that
is used to locate services. An exemplary implementation has
a registry server 500 on every node in the system 100. The
local registry servers 500 contain only information about
services that are only available on the local node. This
enables locally contained operations to run even when the
node becomes temporarily isolated or disconnected. Global
information is forwarded to a set of global registration
servers 500. The actual forwarding can be offloaded to the
local registration servers 500, which are responsible for
ensuring that the information eventually reaches the global
servers 500.

Registration information consists of a set of key/value
pairs. The following example indicates the presence of a tap
service (with identifier tap1) for the data type DNS in a zone
rcx, whose service interface listens on 10.10.0.5:55000:

¢ class=tap,type=dns,zone=rcx,tapid=tap 1,

address=10.10.0.5,port=55000

A query to the registration server 500 provides some
subset of the key/values and all entries that match will be
returned. Thus, a query for

‘class=tap,type=dns,zone=rcx,tapid=tapl’
would match the above and return all the values. This
functionality is also used to locate where features may
reside.

FIG. 5A is a flow chart describing an exemplary imple-
mentation of a query server registration process 510 incor-
porating aspects of the present invention. The query server
registration process 510 initially listens for registration
requests from query servers 600 during step 515. Thereafter,
the query server registration process 510 receives a set of
tags (key/value pairs) identifying capabilities of the regis-
tering query server 600 during step 520.

US 9,489,426 B2

7

The query server registration process 510 creates an
identification for registration and maps tags to this new
identifier during step 525. The associated information is
stored in a hash-table with the tags as a key during step 530.
A test is performed during step 535 to determine if the
connection to the registered query server closes. If it is
determined during step 535 that the connection to the
registered query server closes, then remove the identification
information from the hash table during step 540 and return
to listening state during step 515.

If, however, it is determined during step 535 that the
connection to the registered query server does not close, then
go to listening state during step 515.

FIG. 5B is a flow chart describing an exemplary imple-
mentation of a client query server discovery process 550
incorporating aspects of the present invention. As shown in
FIG. 5B, the client query server discovery process 550
initially waits for client requests during step 560. The client
query server discovery process 550 receives tags (key/value
pairs) from a client during step 565 and then looks up all
query server identifiers in a hash table during step 570 using
the provided keys.

The client query server discovery process 550 then deter-
mines an intersection I of all query server identifiers satis-
fying all tags during step 575 and returns the set I of
identifiers to the client during step 580. Program control then
returns to the listening step 560.

Query Server

The exemplary FCCE provides a query interface that
supports multiple ways of accessing the derived knowledge.
The registration service (RS) 500 can be used to find the root
collector 300 that stores the features of interest. In addition,
a query server 600 can be employed to query the corre-
sponding feature store 400 using specific feature types and
keys as query predicates; Further, a user can subscribe to
specific extractors/collectors (as routed by the registration
service) about feature types of interest using the subscription
server 700.

The query server 600 provides access to the features in the
feature stores 400, which allows an analyst to look up the
feature store 400 using feature types (feature identifier) and
query key(s) as query predicates. The query server 600 can
provide a feature identifier to indicate the types of features
of interest, as well as one or more query keys. Each query
key is combined with the feature identifier and encoded
using the same data encoding format used in the extraction
step creating a set of encoded keys [K]. For each of the
encoded keys in [K], a lookup is used to query the key/value
database. If the lookup fails, then either nothing is done, or
the failed key is emitted with an indication that the lookup
failed. Otherwise, for each value in the retrieved record, the
encoded {TS,V} are decoded and the K+{TS,V} are emit-
ted.

FIG. 6 is a flow chart describing an exemplary imple-
mentation of a query server process 600 incorporating
aspects of the present invention. As shown in FIG. 6, when
a query server 600 is started, the supported key/value pairs
are registered with the registry server 500 during step 605.
The query server 600 then waits for client requests during
step 610 and receives keys.

The query server 600 then retrieves all values from the
feature store 400 that match the received key during step
615, using the read process 480 (FIG. 4C), and sends the
retrieved key/value pairs to the client during step 620. The
query server 600 then returns to the waiting state 610.

The query server 600, co-located at root collector nodes
300, maintains registrations that provide higher level keying

10

15

20

25

30

35

40

45

50

55

60

65

8

information about what data is in their feature stores 400.
For example, a query server 600 might be registered as a
feature store class (fs), offering the feature IPByNameDate
for the date range between 2012/04/01 and 2012/04/02,
where two different query servers 600 (hosted on nodes
10.10.0.6 and 10.10.0.7) offer features for the same date.

‘class=fs,feature=IPByNameDate,date=20120401,

address=10.10.0.6,port=12345"

‘class=fs,feature=IPByNameDate,date=20120401,

address=10.10.0.7 ,port=12345"

‘class=fs,feature=IPByNameDate,date=20120402,

address=10.10.0.7 ,port=12345"

A query interface can locate all the query servers 600
offering features with the name IPByNameDate by request-
ing ‘class=fs,feature=IPByNameDate’ at the registry server
500. This query would return the two registered query
servers 600. If only information from the date 2012/04/02
was desired, the query interface would request

‘class=fs,feature=IPByNameDate,date=20120402’

The query interface then sends the query directly to the
resulting set of query servers 600, identified by their IP
address and port number. While the registry server 500
provides a very high performance service, in practice, the
query service would cache lookups and not have to perform
the registration lookup for every query to be performed.

Subscription Server

The exemplary subscription server 700 comprises a new
clients/pattern subscription process 710 and a new matching
features streaming process 750, as discussed further below
in conjunction with FIGS. 7A and 7B.

FIG. 7A is a flow chart describing an exemplary imple-
mentation of a new clients/pattern subscription process 710
incorporating aspects of the present invention. As shown in
FIG. 7A, the exemplary new clients/pattern subscription
process 710 initially listens and receives key match patterns
(KMP) from a client during step 715.

The new clients/pattern subscription process 710 then
registers the key match pattern with the feature store 400
during step 720 and stores the client/matching pattern in a
subscriber list during step 725.

When the new clients/pattern subscription process 710
detects that a client disconnects during step 730, the client
is removed from the subscription list during step 735.

If the new clients/pattern subscription process 710 detects
that no other clients with KMP are connected during step
740, the new clients/pattern subscription process 710 unsub-
scribes the KMP from the feature store 400 during step 745.
Program control then returns to the listening step 715.

FIG. 7B is a flow chart describing an exemplary imple-
mentation of a new matching features streaming process 750
incorporating aspects of the present invention. As shown in
FIG. 7B, the exemplary new matching features streaming
process 750, initially receives new features for a registered
matching pattern from the feature store 400 during step 755.
The new matching features streaming process 750 then
looks up clients whose matching pattern fit the new feature
during step 760 and forwards the new features to clients that
submitted matching patterns for the newly received features
during step 765. Program control then returns to step 755.

FIG. 8 illustrates an exemplary analysis 800 of a security
threat in accordance with aspects of the present invention.
The exemplary analysis 800 automatically extracts corre-
lated events from different locations, data sources, and time
periods.

Cyber security attacks are becoming ever more sophisti-
cated requiring analysis of large volumes of diverse data in
order to detect or investigate them. Timely response to the

US 9,489,426 B2

9

incidents requires near real-time analysis of the data, while
investigations require access to historical data spanning
large time windows.

The exemplary analysis 800 analyzes the scope of the
impact of a known malicious or suspicious external machine
(given its Fully Qualified Domain Name 805) in five stages
810-1 through 810-5, whereby the output of one correlation
stage 810-i is fed as input into the next stage(s) 810-i+1. At
stage 810-1, the exemplary analysis 800 looks up all the IP
addresses related to the investigated external domain name
805 of external machines. Thereafter, the analysis 800
expands knowledge on related suspicious external infra-
structure.

At stage 810-2, the exemplary analysis 800 finds all other
names resolving to any of those IP addresses, both histori-
cally and in real-time. This expands our knowledge from a
single system that has been reported to be hosting malicious
activities (e.g., by blacklists or external investigation
reports) or detected locally as the source of malicious
activity (e.g., by botnet analytics) into the larger network
infrastructure related to this system.

At stage 810-3, the exemplary analysis 800 looks up all
the IP addresses that have been returned for any of those
names during the investigation time period (e.g., one
month). At this point, the analysis has expanded the knowl-
edge about the external infrastructure that may be related to
the incident and has looked three times at the DNS data
collected during this time period with changing input; an
operation, which is hard to parallelize.

The analysis 800 then analyzes the scope of affected
internal devices. At stage 810-4, the exemplary analysis 800
transfers analysis from the ‘outside’ to the ‘inside’ of the
monitored network and determines all internal devices that
either looked up any of the external names (DNS messages)
and/or connected (network flows) to any of the external IP
addresses. Flows and lookups deliver internal IP addresses,
that are within stage 810-4 automatically translated into
MAC addresses (using historical DHCP/ARP information)
and then collapsed to the different devices (e.g., unifying
wireless and wired MAC addresses to a single machine).

The analysis 800 then performs a cause/impact analysis
and risk scoring. At stage 810-5, starting from those devices,
the exemplary analysis 800 looks up which credentials have
been used on those devices (SSO, authentication logs) and
that may have been exposed on those suspicious devices, or
which high value assets have been accessed from those
devices (network flows, high value asset information).

The number of further investigated devices can be
reduced by prioritizing them according to the privileges of
the user credentials or the accessed servers hosting valuable
assets.

Exemplary System and Article of Manufacture Details

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

One or more embodiments of the invention, or elements
thereof, can be implemented in the form of an apparatus

10

15

20

25

30

35

40

45

50

55

60

65

10

including a memory and at least one processor that is
coupled to the memory and operative to perform exemplary
method steps.

One or more embodiments can make use of software
running on a general purpose computer or workstation that
comprise, for example, a processor, a memory, and an
input/output interface formed, for example, by a display and
a keyboard, in a known manner. The memory may store, for
example, code for implementing the various processes
described herein.

The term “processor” as used herein is intended to include
any processing device, such as, for example, one that
includes a CPU (central processing unit) and/or other forms
of processing circuitry. Further, the term “processor” may
refer to more than one individual processor. The term
“memory” is intended to include memory associated with a
processor or CPU, such as, for example, RAM (random
access memory), ROM (read only memory), a fixed memory
device (for example, hard drive), a removable memory
device (for example, diskette), a flash memory and the like.

In addition, the phrase “input/output interface” as used
herein, is intended to include, for example, one or more
mechanisms for inputting data to the processing unit (for
example, mouse), and one or more mechanisms for provid-
ing results associated with the processing unit (for example,
printer). The processor, memory, and input/output interface
such as display and keyboard, can be interconnected, for
example, via a bus as part of a data processing unit. Suitable
interconnections can also be provided to a network interface,
such as a network card, which can be provided to interface
with a computer network, and to a media interface, such as
a diskette or CD-ROM drive, which can be provided to
interface with media.

Accordingly, computer software including instructions or
code for performing the methodologies of the invention, as
described herein, may be stored in one or more of the
associated memory devices (for example, ROM, fixed or
removable memory) and, when ready to be utilized, loaded
in part or in whole (for example, into RAM) and imple-
mented by a CPU. Such software could include, but is not
limited to, firmware, resident software, microcode, and the
like.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual implementation of the
program code, bulk storage, and cache memories which
provide temporary storage of at least some program code in
order to reduce the number of times code must be retrieved
from bulk storage during implementation.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, and the like) can be
coupled to the system either directly (such as via a bus) or
through intervening I/O controllers (omitted for clarity).

Network adapters such as a network interface may also be
coupled to the system to enable the data processing system
to become coupled to other data processing systems or
remote printers or storage devices through intervening pri-
vate or public networks. Modems, cable modem and Ether-
net cards are just a few of the currently available types of
network adapters.

As used herein, including the claims, a “server” includes
a physical data processing system running a server program.
It will be understood that such a physical server may or may
not include a display and keyboard.

US 9,489,426 B2

11

As noted, aspects of the present invention may take the
form of a computer program product embodied in one or
more computer readable medium(s) having computer read-
able program code embodied thereon. Any combination of
one or more computer readable medium(s) may be utilized.
The computer readable medium may be a computer readable
signal medium or a computer readable storage medium. A
computer readable storage medium may be, for example, but
not limited to, an electronic, magnetic, optical, electromag-
netic, infrared, or semiconductor system, apparatus, or
device, or any suitable combination of the foregoing. More
specific examples (a non-exhaustive list) of the computer
readable storage medium would include the following: an
electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory
(CD-ROM), an optical storage device, a magnetic storage
device, or any suitable combination of the foregoing. In the
context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruc-
tion execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a

20

35

40

45

55

12

machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the FIGS. illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

Method steps described herein may be tied, for example,
to a general purpose computer programmed to carry out such
steps, or to hardware for carrying out such steps, as
described herein. Further, method steps described herein,
including, for example, obtaining data streams and encoding
the streams, may also be tied to physical sensors, such as
cameras or microphones, from whence the data streams are
obtained.

It should be noted that any of the methods described
herein can include an additional step of providing a system
comprising distinct software modules embodied on a com-
puter readable storage medium. The method steps can then
be carried out using the distinct software modules and/or
sub-modules of the system, as described above, executing on
one or more hardware processors 502. In some cases,
specialized hardware may be employed to implement one or
more of the functions described here. Further, a computer
program product can include a computer-readable storage
medium with code adapted to be implemented to carry out
one or more method steps described herein, including the
provision of the system with the distinct software modules.

In any case, it should be understood that the components
illustrated herein may be implemented in various forms of
hardware, software, or combinations thereof; for example,

US 9,489,426 B2

13

application specific integrated circuit(s) (ASICS), functional
circuitry, one or more appropriately programmed general
purpose digital computers with associated memory, and the
like. Given the teachings of the invention provided herein,
one of ordinary skill in the related art will be able to
contemplate other implementations of the components of the
invention.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. An apparatus for processing data, the apparatus com-
prising:

a memory; and

at least one processing device, coupled to the memory,

operative to:

obtain one or more data records;

extract feature information from said one or more data

records, wherein the extracting is performed based on
domain knowledge;

transform said extracted feature information into a trans-

formed key/value pair comprised of a key and a value,
wherein said key comprises a feature identifier of said
extracted feature information;

store said transformed key/value pair in a given bucket of

values in a feature store database comprised of a
plurality of buckets of values only if said key/value pair
does not already exist in said feature store database
using a de-duplication mechanism by determining if
said value of said transformed key/value pair is already
in said given bucket, wherein said given bucket is
identified by said key comprising said feature identifier
of said transformed key/value pair; and

wherein said bucket of values comprise a mathematical

set that stores a given value based on a timestamp of
said given value and without regard to an order in
which said values are written to said bucket.

2. An article of manufacture for processing data, com-
prising a tangible machine readable recordable medium
containing one or more programs which when executed
implement the steps of:

10

15

20

25

30

35

40

45

50

55

60

65

14
obtaining one or more data records;

extracting feature information from said one or more data
records based on domain knowledge;

transforming, using at least one processing device, said
extracted feature information into a transformed key/
value pair comprised of a key and a value, wherein said
key comprises a feature identifier of said extracted
feature information;

storing, using at least one processing device, said trans-
formed key/value pair in a given bucket of values in a
feature store database comprised of a plurality of
buckets of values only if said key/value pair does not
already exist in said feature store database using a
de-duplication mechanism by determining if said value
of said transformed key/value pair is already in said
given bucket, wherein said given bucket is identified by
said key comprising said feature identifier of said
transformed key/value pair; and

wherein said bucket of values comprises a mathematical
set that stores a given value based on a timestamp of
said given value and without regard to an order in
which said values are written to said bucket.

3. The article of manufacture of claim 2, wherein said
storing step further comprises the steps of using the key to
look up a record in said feature store database and, if the
lookup fails, determining that the key and the value are new
and writing a new record to the feature store database keyed
with the key and a value.

4. The article of manufacture of claim 2, wherein said
storing step further comprises the steps of searching a record
in said feature store database to determine if the value
already exists in the record.

5. The article of manufacture of claim 4, wherein said
value does not exist in the record, and said article of
manufacture further comprises the step of appending the
value to the record and storing said record in the feature
store database.

6. The article of manufacture of claim 5, further compris-
ing the step of forwarding said key/value pair to one or more
defined collectors.

7. The article of manufacture of claim 4, wherein said
value exists in the record, and said article of manufacture
further comprises the step of comparing a new time stamp
associated with said extracted key/value pair to an existing
time stamp already associated with said value in said exist-
ing record and, if the new timestamp is earlier than the
existing time stamp, then placing the new timestamp in the
record with the value and updating the record in the feature
store database.

8. The article of manufacture of claim 7, further compris-
ing the step of forwarding said key/value pair and time
stamp to one or more defined collectors.

9. The article of manufacture of claim 2, further compris-
ing the step of associating a timestamp with the key/value
pair.

10. The article of manufacture of claim 2, wherein said
extracted features are processed one or more of in real-time
and in a historical manner.

11. The article of manufacture of claim 2, wherein said
data records are geographically distributed.
12. The article of manufacture of claim 2, wherein said

obtaining and extracting steps employ a hierarchically struc-
tured collection system.

US 9,489,426 B2

15

13. An apparatus for querying one or more features
extracted from one or more data records, the apparatus
comprising:

a memory; and

at least one processing device, coupled to the memory,

operative to:

obtain a feature store database comprised of a plurality of

buckets of values, wherein said feature store is com-
prised of said features extracted from said one or more
data records stored as a key/value pair comprised of a
key and a value, wherein said key comprises a feature
identifier of a given one of said extracted features,
wherein said key/value pair is stored in a given bucket
identified by said key comprising said feature identifier,
wherein said bucket of values comprises a mathemati-
cal set that stores a given value based on a timestamp
of said given value and without regard to an order in
which said values are written to said bucket;

receive a query comprised of at least one query key,

wherein each of said at least one query key is combined
with at least one of said feature identifiers;

retrieve values from the feature store database that match

the query key by employing a read process that reads a
key value from the feature store database by retrieving
a given one of said buckets of values associated with
the key value; and

return one or more retrieved key/value pairs.

14. The apparatus of claim 13, wherein said at least one
processing device is further configured to register supported
key/value pairs with a registry.

15. The apparatus of claim 13, wherein said at least one
processing device is further configured to identify the query
servers offering features with a given name.

16. The apparatus of claim 13, wherein said retrieving
employs a read process that reads a key value from a feature
store by retrieving a bucket of values associated with the key
value.

17. An article of manufacture for querying one or more
features extracted from one or more data records, compris-

20

25

30

16

ing a tangible machine readable recordable medium con-
taining one or more programs which when executed imple-
ment the steps of:

obtaining a feature store database comprised of a plurality

of buckets of values, wherein said feature store is
comprised of said features extracted from said one or
more data records stored as a key/value pair comprised
of a key and a value, wherein said key comprises a
feature identifier of a given one of said extracted
features, wherein said key/value pair is stored in a
given bucket identified by said key comprising said
feature identifier, wherein said bucket of values com-
prises a mathematical set that stores a given value
based on a timestamp of said given value and without
regard to an order in which said values are written to
said bucket;

receiving, using at least one processing device, a query

comprised of at least one query key, wherein each of
said at least one query key is combined with at least one
of said feature identifiers;

retrieving, using at least one processing device, values

from the feature store database that match the query
key by employing a read process that reads a key value
from the feature store database by retrieving a given
one of said buckets of values associated with the key
value; and

returning one or more retrieved key/value pairs.

18. The article of manufacture of claim 17, further com-
prising the step of registering supported key/value pairs with
a registry.

19. The article of manufacture of claim 17, further com-
prising the step of identifying the query servers offering
features with a given name.

20. The article of manufacture of claim 19, further com-
prising the step of sending a given query comprised of said
given name to said identified query servers.

#* #* #* #* #*

